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w=puo and a=ap=0 (lossless resonator), this
equation reduces to

tan Bo(l — d) _ tan Bd
Bo B

which is just (31) in Horner, et al.

Eq. (3) together with the relations
h?—~2=s5%e, and h?—v2= —s%ue impose
six conditions on a total of eight field pa-
rameters, namely ag, B0, ¢, 8, ®, w, e and 0.
Solutions for any six of these may, therefore,
be obtained provided that measurements
have been made to evaluate the remaining
two. It should be emphasized, however,
that such measurements must be conducted
while the sample-filled cavity is undergoing
a transient response under the influence of a
unit impulse of excitation. For it is then that
the oscillations are natural. However, the
field in the cavity may decay so rapidly that
no measurements can be performed with
any degree of accuracy. Of course, if the
cavity losses are relatively small, as is often
the case in practice, the necessary measure-
ments can be made under steady-state
sinusoidal operating conditions. It is obvi-
ous, therefore, that the equations of free os-
cillations are valid representations of forced
oscillations only if the cavity is virtually
lossless. A different set of equations is
needed when the losses in the cavity are rela-
tively high.

Careful examination of the conditions
for free oscillations shows that, if the speci-
men under test is characterized by a finite,
nonzero conductivity, the frequencies of
free oscillations and the associated propaga-
tion constants are complex. The important
implication of this fact is often overlooked.
It is generally true that, when driven sinu-
soidally in time, the specimen-loaded cavity
cannot be forced to oscillate at any one of
its natural frequencies and that, therefore,
(3) does not hold under these conditions.
The significant issue in this, as in the case of
any lossy resonator, is the definition of
resonance. With regard to this question the
viewpoint adopted here is that by resonance
of a lossy system is meant the phenomenon
that takes place when, under steady-state
sinusoidal operating conditions, the response
of the resonator reaches a relative maximum
with variations in frequency. The corre-
sponding frequencies are, by definition, the
resonant frequencies of the resonator.

The next problem, therefore, is to de-
termine the condition of resonance for the
specimen-loaded cavity of Fig. 1.

It is a well-known fact that in a linear
system the natural frequencies of oscilla-
tion are the poles of the transfer function
for the particular problem being investi-
gated or, stated in another way, the zeros of
its denominator. Accordingly, if D(s) de-
notes this denominator, the natural frequen-
cies of oscillation are the roots of the alge-
braic equation D(s)=0 and the resonant
frequencies may be defined by the roots of
the equation

@

d
d—w|D(jw)] =0.

By analogy, the natural frequencies of oscil-
lation of the lossy, but linear, resonator of
Fig. 1 are solutions of (3), while its resonant
Sfrequencies are solutions of the equation
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where « and v are, respectively, the real and
imaginary parts of the left-hand member
of (3) evaluated at s=jw, yo=7Bs and y=«
-+j8. The condition for resonance, ex-
pressed by (5), together with the relations
B 4Bot=cwlue and I2—ryi=oule—jo/w)
constitute a set of four equations expressing
relations among a total of six variables,
namely By, @, 8, ®, eand o. The desired quan-
tities € and o (and, hence, the loss tangent)
may be determined from these equations
using measured values of either w and 8, or
Bo and B. (A method for measuring phase
shift constants has been reported by Sim-
mons.’) The tacit assumption is, of course,
that the specimen-filled cavity must be at
resonance and its dimeunsions must remain
fixed while measurements of the selected
pair of variables are being made. It is evi-
dent that while the results of these measure-
ments could ultimately be used to evaluate
the Q of the specimen, the solution of the
problem at hand may be completed by the
present method without introducing Q into
the calculations.
D. T. Paris
School of Elec. Engrg.
Georgia Inst. of Technology
Atlanta, Ga.

5 A, J. Simmons, “TEn Mode Components in the
3mm Region,” presented at the Millimeter and Sub-
I]nillimeter Wave Conference, Orlando, Fla.; January
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Bounds on the Elements of the Sus-
ceptance Matrix for Asymmetrical
Obstacles in Waveguides

There exists a method!~? for the deter-
mination of upper and lower bounds on the
elements of the reactance matrix B, or the
equivalent network elements, for multi-
channel scattering. This technique was ap-
plied! to specific examples of lossless ob-
stacles in a rectangular waveguide, which
are symmetric with respect to some plane
perpendicular to the axis of the waveguide.
The problem was analyzed in terms of un-
coupled even and odd standing waves.
Numerical results were obtained® for one-
dimensional quantum mechanical scatter-
ing by an asymmetric potential V(x)
#V(—x).

Manuscript received October 30, 1963. This com-
munication is from the U. S. Naval Applied Science
Laboratory, Brooklyn, New York.
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It is the purpose of this communication
to derive bounds on nonsymmetric obstacles
in rectangular waveguide (see Fig. 1) by
following the procedure of Bartram and
Spruch,?® and adapting certain of their re-
sults,?™* (We refer the reader to the above
mentioned references for a discussion of the
details which are only sketched or omitted
here.)

The electric field intensity E(r) satisfies
the differential matrix equation

LE= —VXVXE+ [(w/) +VIE
=0. (6))

E and the matrix potential V are expressed
in terms of even and odd functions of 2, the
direction of propagation.

E, 1 /W, W
E= ( )’ V= _( W 3 (2)
Eg 2 VVO W¢

where
W, =W, =W = wle — 1)/c%

w, ¢ and e are the angular frequency, velocity
of light and relative permittivity of the
obstacle, respectively. Since the two chan-
nels (corresponding to the even and odd por-
tions of the electric field) are coupled by the
matrix potential, three parameters are re-
quired to describe the asymptotic effects of
the scattering process. The asymptotic form
of Efor z—4« is

E = f(x, »)[eq cos (kz + 6)
— Bgegsin (kz +6)], (3)

where f(x, v) is the form function for the
propagating mode, By is the susceptance
matrix, eg is an amplitude column matrix
0<0<m, and %2 is (w/c)2—(x/a)? (a is the
wide dimension of the guide).

In order to obtain bounds on the sus-
ceptance matrix we have to consider an
associated eigenvalue problem with certain
boundary conditions,

Lu(t) + wno(r) =0, 4

where 1, and u, are its eigenfunctions and
eigenvalues, respectively, and where p(r) is
a real, positive definite Hermitian matrix.
Let oy and —Bg be the smallest positive and
smallest (in absolute value) negative eigen-
value, respectively, associated with the
eigenmaodes of (4). The upper and lower
bounds on a quadratic form of the suscep-
tance matrix are’

—oyt [ (©BI 0SB
< key'Bypeg — kestBoeg  (5)

+ f EcheE(dT

<o [ (LB LB,

where E, is a trial function which is required
to have the asymptotic form of E, (3), but
the unknown By is replaced by Bg. The
range of integration of dr is over the interior
of the waveguide (22>0).

The above theory will now be applied
to nonsymmetric obstacles in waveguide
extending a distance d in the = direction (see

5 The symbol + stands for the Hermitian adjoint.
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Fig. 1—A dielectric obstacle in a rectangular waveguide. The obstacle is nonsym-
metric with respect to a plane perpendicular to the axis z of the waveguide.
The cylinder extends a distance d in the z direction.

Fig. 1). In order to obtain bounds on the
three distinct elements of By, we evaluate
(5) by using three different forms of the trial
function, E;. To do this we choose the fol-
lowing three values for eg,

0= () () (1)

The corresponding values of eg! Byeg are then
Bn, Bzz, and B11+Bzz+2Bm. The exact
solution of a dielectric slab, which fills the
region 0<z<d of the waveguide (the slab
completely encloses the obstacle), is intro-
duced as a trial function. The permittivity
of the slab is retained as a parameter which
can be varied to improve the bounds. The
trial function within the region of the di-
electric slab is then

_ (iCsin (rx/a) cos Kz)
. jD sin (wrx/a) sin Kz/ '

where K is the parameter to be varied, Cand
D are constants and j is a unit vector in the
v direction. eptByeq, and C and D are de-
termined by matching the tangential com-
ponents E, in (7) and H; at z=d to the
asymptotic trial expressions (B replaced by
By,) of (3), and by specifying the value of 8.
It can be shown that for

0]

1
=7 —kd, d(&2 4+ W)t < il

we have
Bg— —
and
as > [(n/2)? — p2d? — Wd?l/pd2.  (8)

The requirement d(k24-W)V2<ir means
that the axial extent & of the obstacle must
be less than 1), where A, is the guide wave-
length in the dielectric.

Substituting (6), (7) and (8) in (3), we ob-
tain the upper and lower bounds on Bu, B,
and By+Bn+4-2Bp:

—sec? (Kd) [P*Q+ + (2PR + RO, (a) ™!

< Kd tan (Kd) — KdBy
+ sec?(Kd)(PQ* + RI,) <0, (9a)
—csc? (Kd)[P20™ ++ (2PR + R)Iy)(ag') !

< — Kd cot Kd — KdBs

+ esc? (Kd)(PQ™ + RIp) <0, (9b)
— {sec? (Ka)[ P20+ + (2PR + 2R} 1.

+ csc? (Kd)[ P20~ + (2PR + 2RI ,]

+ 4(PR + R2) sec (Kd) csc (Kd)I} (ag’)™1

< Kd[tan (Kd) — cot (Kd)]

- Kd(Bu + Baz + 2312)

+ sec? (Kd)(PQ* + RI,)

+csc? (Kd)(PQ~ + RTo)

+ 2R sec (Kd) csc (Kd)I <0, (9¢)
where
P = (kd)? — (Kd)?

0*~ = {1 + sin 2Kd)/(2Kd)]
R = iW4?
o = (r/2)* — (k* + W)d*

I, = (2/abd) f sin? (wx/a) cos? (Kz)dr
obst

Iy = (2/abd) f sin? (wrx/a) sin? (Kz)dr
obst

= (2/abd) f sin? (rx/a) cos (Kz)
obst sin (Kz)dr

(b is the narrow dimension of the wave-

guide). The range of integration in Io, I, and
I is over the volume of the obstacle.

K. KALIRSTEIN

B. SCHULDINER

U. S. Naval Appl. Sci. Lab.

Naval Base

Brooklyn, N. Y.

Note on Tabulations of Constants
for Rigid Hollow Metal Rectangular
Waveguide

Precise four decimal place tables of free-
space and waveguide wavelength and related
ratios for rigid hollow metal rectangular

Manuscript received November 21, 1963.

253

waveguides were computed by the Sperry
Microwave Electronics Company and pub-
lished in this journal in 1956.* This set of
tables was later extended to cover 28 Ameri-
can waveguide sizes and appeared in a hand-
bhook.?* Booth has published a set of micro-
wave data tables including waveguide wave-
length to three decimal places for ten com-
monly used British rectangular waveguide
sizes.?

Unfortunately, two of these tabula-
tions!2 use a “low” value for the speed of
light: ¢=299776 mks and thus contain
errors in their tabulated constants. Booth's
tabulations use the presently accepted value
of ¢=299792.5 km/sect but cover only ten
British waveguide sizes.

The errors entailed by assuming the
older “low” value of ¢ can hest be explained
by examples comparing the free-space and
waveguide wavelengths computed using the
“low” and “accepted™ values of ¢. Let us first
examine the error entailed in the computa-

A (emd A (cm)
frequency (Ge) ¢ z(lisolg?g 76 ¢ =(2u9s£§r7l§2.5
km/sec km/sec
0.275 109.0094 109.0155
1.000 29.9776 29.9793
160.000 0.2998 0 2998

tion of free-space wavelength. Thus it is seen
that for frequencies below 100 Gc/ errors in
A may occur in the third or fourth decimal
place tabulated if the “low” value of ¢ is
used. In a similar fashion, errors can be ob-
served in waveguide wavelength for a single
waveguide size. Let us, for example, examine
A, for the common 2.000 X 1.000 inch outside
dimension waveguide (IEC R-48, British
WG-12, American WR-187 and RG-49/U
numbers):

?g(qm) %g(c;m)

using using
frequency (Ge) ¢ =209776 ¢ =1299792.5

km/sec km/sec

3.600 17 2416 17.2454

4.800 8.2815 8.2823

6 400 5.3822 5.3825

Errors in A, can be observed in the third
decimal place tabulated if the “low” value
of ¢ is used.

In summary, then, presently available

. } p -

tabulations of rectangular waveguide con-
stants are either slightly restricted in scope
or are present numbers that are slightly in
error for the most commonly used wave-
guide sizes for frequencies below 100 Ge.

There are presently available 38 stand-
ard rectangular waveguide sizes in approxi-
mately two-to-one dimension ratio cata-
logued according to the International Elec-
trotechnical Commission, American and
British systems. To the author’s knowledge,
no one complete cross referencing of identi-
fication systems® or complete set of tables

1 Sperry Microwave Electronics Co., “Tables of
constants for rectangular waveguides,” IRE TRaNs.
oN_ MICROWAVE THEORY AND TECHNIQUES,” vol.
MTT-4, 12 page supplement; July, 1056. .

2 “Microwave Engineers” Handbook,” Horizon«
House-Microwave, Inc., T, S. Saad, Ed., Brookline,
Mass.; 1963. .

2 A, E. Booth, *Microwave Data Tables,” Iliffe &
Sons, London, England; 1959.

4 A, G, McNish, “The speed of light,” IRE TRANS.
ON INSTRUMENTATION, vol. I-1(, pp. 138-148; De-
cember, 1962,

5 T. N. Anderson, “Waveguide alphabet soup or
KXCSLP,” Microwave J., vol. 4, pp. 42-43; May,

1961. Cross references American to IEC numbers for
34 American waveguide sizes.)



