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~ = KOand a= ao = O (lossless resonator), this
equation reduces to

tan ~o(l – d) tan lii
— —.—

Do = @ ‘
(4)

which is just (31) in Homer, et al.
Eq. (3) together with the relations

hz –72 = SZWCC and lz2 –72 = –S2PW0 impose

six conditions on a total of eight field pa-
rameters, namely CM, BO, a, (3, o, CO,, e and u.

Sohstions for any six of these may, therefore,

be obtained provided that measurements
have been made to evaluate the remaining

two. It should be emphasized, however,

that such measurements must be conducted
while tbe sample-filled cavity is undergoing

a transient response under the influence of a
unit impulse of excitation. For it is then that
the oscillations are natural. However, the
field in the cavity may decay so rapidly that

no measurements can be performed with

any degree of accuracy. Of course, if the
cavity losses are relatively small, as is often

the case in practice, the necessary measure-
ments can be made under steady-state

sinusoidal operating conditions. It is obvi-
ous, therefore, that the equations of free os-
cillations are valid representations of forced

oscillations only if the cavity is virtually
lossless. A different set of equations is
needed when the losses in the cavity are rela-

tively high.
Careful examination of the conditions

for free oscillations shows that, if the speci-

men under test is characterized by a finite,

nonzero conductivity, the frequencies of

free oscillations and the associated propaga-

tion constants are complex. The important
implication of this fact is often overlooked.
It is generally true that, when driven sinu-
soidally in time, the specimen-loaded cavity
cannot be forced to oscillate at any one of
its natural frequencies and that, therefore,
(3) does not hold under these conditions.
The significant issue in this, as in the case of

any 10SSY resonator, is the definition of
resonance. With regard to this question the

viewpoint adopted here is that by resonance

of a 10SSY system is meant the phenomenon

that takes place when, under steady-state
sinusoidal operating conditions, the response
of the resonator reaches a relative maximum
with variations in frequency. The corre-
sponding frequencies are, by definition, the
resonant frequencies of the resonator.

The next problem, therefore, is to de-

termine the condition of resonance for the

specimen-loaded cavity of Fig. 1.
It is a well-known fact that in a linear

system the natural frequencies of oscilla-
tion are the poles of the transfer function
for the particular problem being investi-

gated or, stated in another way, the zeros of
its denominator. Accordingly, if D(s) de-
notes this denominator, the natural frequen-

cies of oscillation are the roots of the alge-
braic equation D(s) = O and the resonant
frequencies may be defined by the roots of
the equation

&@) I = o.

By analogy, the natural freguenc;es of oscil-

lation of the Iossy, but linear, resonator of

Fig. 1 are solutions of (3), while its resonant

frequencies are solutions of the equation

: (u’+ 2’) = o (5)

where a and v are, respectively, the real and
imaginary parts of the left-hancl member
of (3) evaluated at s =j~, TO =j(30 and ? ‘a

+j3. The condition for resonance, ex-
pressed by (5), together with the relations

?S2+(302 = CNMWO and hz —72 = ap(~ —ju/co)
constitute a set of four equations expressing
relations among a total of six variables,
namely PO)a, @, U, c and a, The des~red quan-

tities ● and u (and, hence, the loss tangent)
may be determined from these equations

using measured values of either ~ and L?, or

PO and P. (A method for measuring phase
shift constants has been reportedl by Sim-
mons.s) The tacit assumption is, of course,

that the specimen-filled cavity must be at
resonance and its dimensions must remain

fixed while measurements of the selected

pair of variables are being made. It is evi-

dent that while the results of these measure-

ments could ultimately be used tc) evaluate
the Q of the specimen, the solution of the
problem at hand may be completed by the

present method without introducing Q into
the calculations.
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Bounds on the Elements of the Sus-

ceptance Matrix for Asymmetrical

Obstacles in Waveguides

There exists a methodl–8 for the deter-

mination of upper and lower bounds on the

elements of the reactance matrix B, or the

equivalent network elements, for multi-
channel scattering. This technique was ap-
plied~ to specific examples of lossless ob-
stacles in a rectangular waveguicle, which
are symmetric with respect to some plane
perpendicular to the axis of the wa~-eguide.
The problem was analyzed in “terms of un-

coupled even and odd standing waves.

,~umerical results were obtained3 for one-
dimensional quantum mechanical scatter-

ing bv an asymmetric potential V(x)
# V’( –x).
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It is the purpose of this communication
to derive bounds on nonsymmetric obstacles
in rectangular waveguide (see Fig. 1) by

following the procedure of Bartram and
Spruch,s and adapting certain of their re-

sults, 2–4 (We refer the reader to the above
mentioned references for a discussion of the

details which are only sketched or omitted

here. )
The electric field intensity E(r) satisfies

the differential matrix equation

ct3E= –VXVXE+ [(0’/.2) +V]E

= o. (1)

E and the matrix potential V are expressed

in terms of even and odd functions of z, the
direction of propagation.

E,
E=

()Ed ‘ ‘=%: %) ‘“

where

w. = W, = w = coz(. – 1)/6’.

w c and e are the angular frequency, velocity
of light and relative permittivity of the
obstacle, respectively. Since the two chan-
nels (corresponding to the even and odd por-

tions of tbe electric tield) are coupled by the

matrix potential, three parameters are re-
quired to describe the asymptotic effects of

the scattering process. The asymptotic form
of Efor s++@ is

E = f(x, y) [e~ cos (kz + 0)

– B~e~ sin (kz + 0)], (3)

\vhere f(x, y) is the form function for the

propagating mode, BO is the susceptance

matrix, e.. is an amplitude column matrix
()< f?<r, and k! is (OJ/C)2-(T/a)2 (a is the

wide dimension of the guide).
In order to obtain bounds on the sus-

ceptance matrix we have to consider an
associated eigenvalue problem with certain

boundary conditions,

$+.(r) + vndr) = 0, (4)

where IIJWand P. are its eigenfunctions and
eigenvalues, respectively, and where p(r) is

a real, positive definite Hermitian matrix.

Let ad and –@O be the smallest positive and
smallest (in absolute value) negative eigen-
value, respectively, associated with the
eigenmodes of (4). The upper and lower

bounds on a quadratic form of the suscep-
tance matrix are5

—%-1s(SE,) t(p-’43EJdr

s< &-’ (J3EJt(@-’&EJdr,

where EL is a trial function which is required
to have the asymptotic form of E, (3), but
the unknown B@ is replaced by %. The
range of integration of dr is over the interior
of the waveguide (z> O).

The abo~,e theory will now be applied

to uonsymmetric obstacles in waveguide
extending a distance d in the G direction (see

5 The symbol t stands for the Hermit ian adjoint.
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Fig. 1—A [IleIectrLc obstacle inarectangular \\,~vegtlide. The obs,tadeisnonsym-
rnetrlc with respect to a plane perpendicular to the axis z of the wttvegude.
The cylinder extends a distanced in the z direction.

Fig. 1). In order to obtain bounds on the

three distinct elements of Bfl, we evaluate

(5) by using three different forms of the trial
function, E,. To do this we choose the fol-
lowing three values for e~,

“=(:) c) andc) ‘6)
Thecorresponding values of eOtB~e@aretben
B,*, B2Z, and BII+Z3ZZ+’2B1Z. “rhe exact
solution of a dielectric slab, which fills the
region O<z<d of the waveguide (the slab

completely encloses the obstacle), is intro-

duced as a trial function. The permittivity
of the slab is retained as a parameter which

can be varied to improve the bounds. The

trial function within the region of the di-

electric slab is then

E, =
(

jC sin (7.z/a) cos Kz

)
(7)

jD sin (7rx/a) sin K-z ‘

where A-is the parameter to be varied, c and
D are constants and j is a unit vector in the

y direction. e~tB#~e~, and C and D are de-
termined by matching the tangential com-
ponents Et in (7) and H* at z = d to the

asymptotic trial expressions (B8 replaced by
B8,) of (3), and by specifying the ~-alue of O.

It can be shown that for

8 = T – kdj d(kz + W)112 < :T

we have

p~+– m

and

cw > [(7r/2)2 — k=dz — Wd~l/pd2. (8)

The requirement d(k2+ W)llz < ~~ means

that the axial extent d of the obstacle must
be Zess than +XU, where Xu is the guide wa\,e-
length in the dielectric.

Substituting (6), (7) and (8) in (5), we ob-
tain the upper and lower bounds on l?ll, i322,

and Bu+B22+2B12:

-secz (Kd) [PZQ+ + (2PR + R2)IC] (ae’)–l

< Kd tan (h-d) – KdB,l

+ sec2(Kd) (PQ+ + RI,) ~ O, (9a)

‘CSC2 (lCd) [P2Q– + (2PR + R2)1”](cw’)–1

~ – Kd cot Kd – A’dB~~

+ CSC2(Kd) (F’Q- + RI,) <O,

- {see’ (Kd) [P2Q+ + (2PR + 2R2)I,1

(9b)

+ CSCZ(Kd) [l”Q- + (2PR + 2R’)1o]

+ 4(PR + R’) sec (I@ csc (Kd)Z} (CW’)-l

< Kd[tan (Kd) – cot (Kd)j

– A-d(B,, + B,, + 2B12)

+ see’ (Kd) (PQ+ + III,)

+CSC’ (Kd) (PQ- + RTO)

+ 2R SeC (Kd) CSC(Kd)I ~ O, (9C)

where

P = (kd) 2 – (Kd) 2

Q+,- = ~[1 t sin (2Kd)/(2Kd) ]

R z ~Wds

m’ = (T/2)z — (kg + Wdz

1. = (2/abd)
J

sinz (7rx/u) cosz (K-z)dr
obst

1, = (2/abd)
J

~b,t sinz (m*/a) sinz (Kz)dr

I = (2/abd) ~ sin’ (mx/a) cos (K:)
oh st

sin (k-z) dT

(b is the narrow dimension of the wave-

guide). The range of integration in Io, I. and

1 is over the ~,olume of the obstacle.
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Note on Tabulations of Constants

for Rigid Hollow Metal Rectangular

Waveguide

Precise four decimal place tables of fi-ee-
space and waveguide wavelength and related
ratios for rigid hollow metal rectangulm-

Manuscript received November 21, 1963.

waveguides were computed by the Sperry

Microwave Electronics Company and pub-

lished in this journal in 1956.1 This set of

tables was later extended to cover 28 .\meri-

cau wa~,eguide sizes and appeared in a hand-

book.z Booth has published a set of micro-
wave data tables including wa veguide wave-
length to three decimal places for ten com-

monly used British rectangular waveguide
sizes.3

CTnfortunately, two of these tabula-

tions” use a “low” value for the speed of
light: c = 299776 mks and thus contain

errors in their tabulated constants. Booth’s
tabulations use the presently accepted value

of c =299792.5 km/secf but cover only ten
British waveguide sizes,

The errors entailed b!; assuming the

older “low” value of c can be St be explained

by examples comparing the free-space and
waveguide wavelengths computed using the
“low” and “accepted” values (of c. Let us first
examine the error entailed in the computa-

~ [cm) h (cm)

frequency (Gc)
, @:76 ~ =$$$2,5

km/3ec km/see ‘

0.275 109,0094 109,0155
1.000 29,9776 29.9793

100.000 0, 299S O 2998

tion of free-space wavelength Thus it is seen
that for frequencies below ~00 Gc/ errors in

x may occur in the third or fourth decimal
place tabulated if the “low” value of c is

used. In a similar fashion, (errors can be ob-
served in waveguide wavelength for a single
waveguide size. Let us, for example, examine

& for the common 2.000X 1.000 inch outside

dimension waveguide ( IEC R-48, British
WG-12, American WR-187 and RG-49/U

numbers):
——

ku(~m) &g(cm)

frequency (Gc) (using (using
c =299776 C =299792.5

km/see km/see
—— ——.———__.——.—.—-———_

3.600 17 2416 1’7.2454
4.s00 8.2815
6 400

S.2823
5.3822 5.3825

————
Errors in & can be observed in the third
decimal place tabulated if the “low” value
of c is used.

In summary, then, presently available

tabulations of rectangular waveguide con-
stants are either slightly resi:rictecf in scope

or are present numbers that are slightly in

error for the most commonly used wave-
guide sizes for frequencies below 100 Gc.

There are presently available 38 stand-

ard rectangtdar waveguide sizes in approxi-
mately two-to-one dimension ratio cata-
Iogued according to the International EIec-
trotechnical Commission, American and

British systems. To the aut her’s knowledge,
no one complete cross refere ricing of identi-

fication systemst or complete set of tables
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